APPLICATIONS OF 7T MRI IN NEURORADIOLOGY

M Masy, R Hanafi, L Mathys, E Lefebvre, H Fayada, S Bernard, J De Colo, G Haddad M Bretzner, V Delemar, P Dumortier, M Kabbaj, L Patin, P-H Farhra, M Argyropoulou M Gautherot, C Bournonville, J Dumont, S Dhesse, C Bordier, R Viard, O Balédent, R Lopes G Kuchcinski, O Outteryck, R Jardri, A Amad, JM Constans, T Yzet, L Hacein Bey, X Leclerc, JP Pruvo

OUTLINE

- I. 7T MRI : Overview
- II. Clinical applications in neurovascular diseases
- III. Clinical applications in neuroinflammatory diseases
- IV. Clinical applications in mental health
- V. Clinical applications in neurodegenerative diseases
- VI. Regional project « ARIANES »

7T MRI

- Increase in B0
- Increased proton resonance frequency
 - \rightarrow need to increase RF wave power
 - \rightarrow more energy delivery (measured in W/kg) / heating of local tissues
 - \rightarrow difficulty in homogeneizing B0 & B1+ / image inhomogeneity
- Modification in T1 and T2 relaxation times
- Improved signal/noise ratio (SNR)

Improved spatial resolution

7T VS 3T

	Advantages	Disadvantages
Specific absorption rate		Increase in energy delivery
Т1	TOF, ASL, Lesser gadolinium need	Increase acquisition time
Т2		Diffusion
T2*	SWI, BOLD	
SNR (signal/noise ratio)	Improved spatial resolution	
Chemical shift	Improved fat saturation Improved spatial resolution	Increase in chemical shift
Magnetic susceptibility	SWI, BOLD	Increase in susceptibility artifact
Dielectric effect		Variable signal loss

II. CLINICAL APPLICATIONS OF 7T MRI IN NEUROVASCULAR DISEASES

Currently no application in stroke to guide thrombolysis or thrombectomy.

Application in the workup of stroke :

- intracranial atheromatous disease

Better definition of lesion load on 7T MRI in asymptomatic elderly patients

Harteveled et al 2017

 \rightarrow 7T MRI helps separate out risk factors from wall abnormalities in circle of Willis arteries.

Zwartbol et al 2019

Significantly more lesions in elderly, hypertensive, type 2 diabetes

→ Change in treatment plan in risk factors in symptomatic patients with no other cause for stroke ?

Future goal: *in vivo* study of plaque composition, possible *ex vivo* with sequences not available for clinical use.

→ Differentiate between plaque components based on T1 shortening value.

Stroke workup :

- intracranial atheromatous disease
- Small artery disease (lipohyalinosis)

Better morphological definition of lenticulo-striate arteries (lacunar strokes).

Also functional evaluation of perforating arteries. Physiopathological confirmation.

Higher pulsatility index in patients compared to controls.

Currently no application in stroke to guide thrombolysis or thrombectomy. Application in stroke workup.

Biomarkers for neurodegenerative disease (especially vascular dementia).

Detection of cortical micro-infarctschronic microbleeds. Topography can suggest type of dementia. Van Veluw et al 2013

Currently no application in stroke to guide thrombolysis or thrombectomy.

Application in stroke workup.

Biomarkers for neurodegenerative disease (especially vascular dementia).

Improved detection of cavernomas (type IV) and draining vein.

Improved magnetic susceptibility leading to improved detection of hemorrage, particularly in cavernomas.

Frischer et al 2012

Currently no application in stroke to guide thrombolysis or thrombectomy.

Application in stroke workup.

Biomarkers for neurodegenerative disease (especially vascular dementia).

Improved detection of cavernomas (type IV) and draining vein.

Unruptured cerebral aneurysms

Development of technique which has allowed to show inverse correlation between unruptured aneurysm wall thickness and friction strain on vessel wall.

Blankena et al 2016

Important for the study of pathological mechanisms leading to an eurysm growth and rupture \rightarrow prediction of rupture risk.

Currently no application in stroke to guide thrombolysis or thrombectomy.

Application in stroke workup.

Biomarkers for neurodegenerative disease (especially vascular dementia).

Improved detection of cavernomas (type IV) and draining vein.

Unruptured cerebral aneurysms

Replacement for DSA (Digital Subtraction Angiography).

7T MRI could replace DSA for the diagnosis / followup of certain diseases, i.e. Moya-Moya disease or syndrome in pediatric population.

Current diagnostic criteria suggest that arterial stenosis / occlusion + abnormal arteriolar network are sufficient for diagnosis.

Deng et al 2016

III. CLINICAL APPLICATIONS OF 7T MRI IN NEUROINFLAMMATORY DISEASES

Multiple Sclerosis

Demyelinating disease

Hyperintense T2-FLAIR lesions

MRI : diagnosis / followup / prognosis & rule out differential diagnoses (NMO +++)

Recently introduced in criteria for spatial dissemination : **cortical lesions**.

 \rightarrow augment diagnostic specificity for MS

De Graaf et al 2013

Recently introduced in criteria for spatial dissemination : **cortical lesions**.

 \rightarrow augment diagnostic specificity for MS

→ more gray matter lesions detected on 7T MRI (Kollia et al 2009, De Graaf et al 2013, Kilsdonk et al 2016)

De Graaf et al 2013

Recently introduced in criteria for spatial dissemination : **cortical lesions**.

 \rightarrow augment diagnostic specificity for MS

 \rightarrow more gray matter lesions detected on 7T MRI (Kollia et al 2009, De Graaf et al 2013, Kilsdonk et al 2016)

→ strong association with physical and mental disability (Harisson et al 2015)

De Graaf et al 2013

Central Vein sign recently described in MS diagnostic criteria.

Mistry et al 2013

Central Vein sign recently described in MS diagnostic criteria.

More frequently seen on 7T MRI compared to 3T (Tallantyre et al 2009)

Mistry et al 2013

Cut-off in > 40% lesions in T2 hypersignal with **central vein** diagnostic characterization of MS.

 \rightarrow vs vascular hypersignal (Kilsdonk et al 2014)

 \rightarrow vs hypersignal in NMO (Sinnecker et al 2012)

 \rightarrow vs hypersignal in Susacdisease (Wuerfelet al 2012)

Mistry et al 2013

Paramagnetic Rim sign

 \rightarrow vs NMO (Chawla et al 2016, Sinnecker et al 2016)

Absinta et al 2013

Chawla et al 2016

Central vein sign

- + Paramagnetic Rim sign
- + Cortical lesions (recently introduced criterion, but categorized as juxta-cortical lesions)
- = MRI Biomarkers for MS

More conspicuous on 7T MRI

Significantly helps rule out differential diagnoses (ECTRIMS 2019 - Stockholm)

IV. CLINICAL APPLICATIONS OF 7T MRI IN MENTAL HEALTH

High prevalence

3rd most common pathology after cancer and cardiovascular diseases (WHO) 1 in 5 French citizen has mental health disease (Institut Montaigne)

Economic burden

Direct and indirect costs estimated at 110 Billion Euros in France Only 2% of biomedical expenditures in France (21 million Euros – Institut Montaigne)

Few or no biomarkers for the diagnosis and follow up of patients Role for high and ultra-high field imaging in the near future ?

Advantages of ultra-high field MRI

Better spectral resolution

Metabolic evaluation, separation between Glutamate and Glutamine (impossible at lower field strengths)

Better spectral resolution

→ Validation of metabolic pathophysiological hypotheses, particularly in schizophrenia

Stahl, 4ème édition, 2015

Better spectral resolution

 \rightarrow Validation of metabolic pathophysiological hypotheses, particularly in schizophrenia

→ Changes in neurotransmitter concentrations in patients with first psychotic event (Wang et al 2019)

Better spectral resolution

- → Validation of metabolic pathophysiological hypotheses, particularly in schizophrenia
- → Perturbation of glutamatergic pathway in related patients (REL ; Thakkar et al 2017)

Better spectral resolution

In vivo modelisation, neurotransmitter anomalies in other mental health diseases

 \rightarrow Anorexia nervosa (Godlewska et al 2017)

→ Depressive disorders (Taylor et al 2017)

Identification of therapeutic targets and evaluation of effectiveness of potential treatments (Li et al 2016, Cai et al 2012, Masaki et al 2016)
Advantages of ultra high field imaging

Better spectral resolution

Metabolic evaluation, separation between Glutamate and Glutamine not possible at low field

Increased magnetic susceptibility

BOLD effect more pronounced \rightarrow improved functional MRI and neuronal network evaluation

Increased magnetic susceptibility

- BOLD effect more pronounced
- \rightarrow improved functional MRI and neuronal network evaluation
- → Improved differentiation between oxyhemoglobin-rich arterial blood (following task) and veinous blood (deoxyhemoglobin).

Increased magnetic susceptibility

BOLD effect more pronounced

 \rightarrow improved functional MRI and neuronal network evaluation

- \rightarrow In patients with schizophrenia, **alteration of neuronal network** :
 - at rest (réseaux sous corticaux et auditifs, Lottman et al 2019 ; réseaux thalamo corticaux, Hua et al 2019)
 - during a cognitive task (Overbeek et al 2019)

Hua et al 2019

Increased magnetic susceptibility

BOLD effect more pronounced

 \rightarrow improved functional MRI and neuronal network evaluation

 \rightarrow fMRI : MRI biomarker for early treatment response ?

De-activation of «default-mode network» during task of facial emotion discrimination = early response to treatment (EDC – Escitalopram ; Spies et al 2017)

Advantages of ultra-high field imaging

Better spectral resolution

Metabolic evaluation, separation between Glutamate and Glutamine not possible at low field

Increased magnetic susceptibility

BOLD effect more pronounced \rightarrow improved functional MRI and neuronal network evaluation

Better spatial resolution

Increased precision in morphometric and volumetric studies

Better spatial resolution

Increased precision in morphometric and volumetric studies

- → Increased volume of hypothalamus in patients treated vs not treated for mood disorder compared to normals (Schindler et al 2019)
- → Significant correlation between volume of habenular complex and severity of depressive disorder in untreated patients (Schmidt et al 2017)
- → Could improve precision of neuroanatomic signature recognized on lower field imaging (De Pierrefeu et al 2018), allowing to predict transition to psychosis in patients with first psychotic event

Better exploration of physiopathological modeling, validation and large scale study with 3T MRI

Future objectives :

- \rightarrow Identify new the rapeutic targets
- → MRI biomarkers to predict response to treatment to assist diagnosis (in case of atypical clinical presentation or early diagnosis at syndromic stage)

V. CLINICAL APPLICATIONS OF 7T MRI IN NEURODEGENERATIVE DISEASES

A PUBLIC HEALTH PROBLEM

- 40% Institutionalized
- 1.3 cases of Alzheimer's disease (AD) in 2020 in France
- Total health care cost (all care, medical and other) : 5 Billion Euros/year
 - 53% hospital care / 47% outpatient care
 - 13% in specialized drug cost / 7% imaging cost

A FEW NUMBERS

Ad patients in france

New cases/year

2/3 are woman

Over 1000 Euros in health care costs for patients / families

Hippocampal atrophy

Hippocampal atrophy

Improved definition of hippocampal sub-zones Definition of patterns of hippocampal atrophy

Imaging amyloid plaques

Imaging amyloid plaques

Magnetic resonance microscopy

Phase contrast MR imaging

PERSPECTIVES

Other fields of neuroradiology :

- → Drug-resistant partial complex seizures : identification of cortical dysplasia not detectable at lower field (Guye et al 2019).
- \rightarrow Parkinson's disease (neuromelanin at T2*)
- → Better characterization of smaller anatomical structures : cochlea, olfactory system, etc.
- \rightarrow Brain tumors : glioblastoma infiltration
- → Trigeminal neuralgia : somatosensory pathophysiology
- \rightarrow Haut de France regional project ARIANES
- \rightarrow Increase in 7T imaging for large scale population studies

FOCAL SEIZURE

Feldman et al, 2019

Subtle right-sided epileptogenic parieto-occipital polymicrogyria faintly seen on axial T2 imaging 3T (A, B) and 7T (C, D).

SWI 7T demonstrates a cluster of venous structures associated with the polymicrogyria (E, F)

Enhanced detection of abnormalities contributed directly to better surgical interventions

GLIOBLASTOMA

Regnery et al, 2019

Increased visibility of major white matter tracts (green arrows) and boundaries between grey matter and white matter (green arrowheads) in the 7T FLAIR, important to evaluate infiltration.

GLIOBLASTOMA

3Tesla

Regnery et al, 2019

Superimposed

Enhanced visualization of tumor infiltration, particularly along white matter tracts :

- $\rightarrow\,$ important to determine volumes to treat by radiotherapy.
- $\rightarrow\,$ lower gross tumor volume in 7T FLAIR
- → possible advantages : improved sparing of organs at risk and enhanced dose coverage of the target volumes.

TRIGEMINAL NEURALGIA

Diffusion tensor imaging (DTI) to detect altered microstructure of thalamic-somatosensory tract anatomy in trigeminal neuralgia

Rutland et al, 2019

7T DTI-based tractography of the thalamic-somatosensory tracts with homunculus

TRIGEMINAL NEURALGIA

FIG. 1. ROI selection. A: Coronal T1-weighted image used for the whole-brain segmentation. B: Thalamic cortex and S1 segmentation results on coronal T1-weighted image. C: A 3D rendering of thalamic and primary visual cortices. Figure is available in color online only.

Rutland et al, 2019

TRIGEMINAL NEURALGIA

TABLE 2. Thalamic-somatosensory tract microstructural properties in patients with TN compared with matched healthy controls

	Affecte	d Side, Mean (SD)		Unaffected Side, Mean (SD)		
Property	Control	TN	p Value	Control	TN	p Value
FA	0.474 (0.02)	0.43 (0.04)	0.01	0.461 (0.02)	0.444 (0.04)	0.60
MD	6.15 × 10 ⁻⁴ (1.72 × 10 ⁻⁵)	6.58 × 10 ⁻⁴ (5.10 × 10 ⁻⁵)	0.02	6.25 × 10 ⁻⁴ (1.31 × 10 ⁻⁵)	6.44 × 10 ⁻⁴ (3.71 × 10 ⁻⁵)	0.06
AD	9.56 × 10 ⁻⁴ (2.65 × 10 ⁻⁵)	9.93 × 10 ⁻⁴ (6.10 × 10 ⁻⁵)	0.13	9.64 × 10 ⁻⁴ (1.94 × 10 ⁻⁵)	9.84 × 10 ⁻⁴ (5.80 × 10 ⁻⁵)	0.60
RD	4.44 × 10 ⁻⁴ (1.88 × 10 ⁻⁵)	4.91 × 10 ⁻⁴ (5.70 × 10 ⁻⁵)	0.01	4.61 × 10 ⁻⁴ (1.89 × 10 ⁻⁵)	4.79 × 10 ⁻⁴ (4.67 × 10 ⁻⁵)	0.19

Boldface type indicates statistical significance. Diffusivity units are expressed in mm²/second.

Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) : properties that mesure white matter fibers quality

- \rightarrow microstructural alteration at the thalamus level and S1
- \rightarrow compensatory mechanism to reduce pain sensation
- → further understanding of the neurobiological substrates of TN and remission from chronic pain.

VI. REGIONAL PROJECT "ARIANES"

STATE OF PLAY

Existing in imaging

A potential grid of 100+ MRI and 150 CT Scan 18 3 Tesla MRI and 5 in installation

Healthcare institutions

2 CHU of Lille and Amien 50 hospitals (CH) 80 private clinics

3T / 7T MRI - AI NETWORK

Identify new 7T MRI biomarkers for a better understanding of the pathophysiology of neurological and psychiatric diseases

AI

Use of 7T biomarkers on cohorts of patients in clinical routine using 3T MRIs from the region

Epilepsy : hippocampal asymmetry

Courtesy of Pr. M. Gueye, CRMBM-CEMEREM, Marseille

7T MRI WORLDWIDE : > 80

Country 💌	City 💌	MRI type 💌	University/Organization Name
Australia	Brisbane	7T	Universito of Queensland (Centre for Advanced Imaging)
Australia	Melbourne	7T	University of Melbourne (Royal Melbourne Hospital)
Austria	Vienna	7T	High Field Magnetic Resonance Center
Belgium	Liège	7T	Centre Hospitalier Universitaire (CHU) de Liège
Brazil	São Paulo	7T	University of Sao Paulo (USP - Autopsy Room Imaging Platform)
Canada	London, Onta	a 7T	Western University of London (Centre for Functional and Metabolic Mappingà
Canada	Montréal	7T	Université McGill
China	Beijing	7T	Chinese Academy of Sciences (State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics)
Denmark	Copenhagen	7T	Danish Research Centre for Magnetic Resonance
Finland	Helsinki	7T	Aalto University
France	Marseille	7T	Centre de Résonance Magnétique Biologique et Médicale
France	Paris-Saclay	11.7T	Atomic Energy Commission (CEA - Neurospin Saclay)
France	Poitiers	7T	Centre Hospitalier Universitaire (CHU) de Poitiers
Germany	Berlin	7T	Helmholtz Association (Max Delbrück Center for Molecular Medicine)
Germany	Bonn	7T	German Center for Neurodegenerative Diseases (DZNE)
Germany	Erlangen	7T	Radiology of the University Hospital Erlangen
Germany	Essen	7T	Erwin L. Hahn Institute for Magnetic Resonance Imaging
Germany	Heidelberg	7T	German Anticancer Research Center (DKFZ - Division of Medical Physics in Radiology)
Germany	Jülich	9.4T	Forschungszentrum Jülich
Germany	Jülich	7T	Forschungszentrum Jülich
Germany	Leipzig	7T	Max Planck Institute for Human Cognitive and Brain Sciences
Germany	Magdenburg	7T	University Otto von Guericke
Germany	Tubingën	9.4T	Max Planck Institute for Biological Cybernetics
Israel	Rehovot	7T	Weizmann Institute of Science
Italy	Pisa	7T	University of Pisa, Fondazione Imago 7
Japan	Iwate	7T	Iwate Medical University (Institue of Biomedical Sciences)
Japan	Kyoto	7T	Kyoto University
Japan	Niigata	7T	University of Niigata (Center for Integrated Human Brain Science)
Japan	Okazaki	7T	National Institute for Physiological Sciences (NIPS)
Japan	Osaka	7T	National Institute of Information and Communications Technology (Center for Information and Neural Networks)

Netherlands	Amsterdam	7T	Spinoza Centre for Neuroimaging
Netherlands	Leiden	7T	Leiden University Medical Center (LUM: Department of Radiology, C.J. Gorter Center for High Field Magnetic Resonanc)
Netherlands		7T	Maastrist University (Scannexus)
Netherlands		9.4T	Maastrist University (Scannexus)
Netherlands		7T	University of Utrecht (Image Sciences Institute, University Medical Center)
	New York	7T	Mount Sinai School of Medicine (Translational and Molecular Imaging Institute)
		7T	Norwegien University of Science and Technology (NTNU)
	Lublin	7T	Medical University of Lublin
South Kore		7T	Korea Basic Science Institute
South Kore		7T	Gachon University of Medicine and Science (Neuroscience Research Institute)
South Kore		7T	Sungkyunkwan University (IBS Center for Neuroscience Imaging Research)
	Lund	7T	Lund University (Bioimaging Center)
Switzerland		7T	Ecole Polytechnique Fédérale de Lausanne (CIBM : Center for Biomedical Imaging)
Switzerland		7T	ETH Zurich (Institute of Chemical and Bioengineering)
	Cambridge		Cambridge (Wolfson Brain Imaging Centre)
	Cardiff	7T	Cardiff University (CUBRIC : Cadriff University Brain Research Imaging Centre)
	Glasgow	7T	University of Glasgow (ICE)
	London	7T	King's College of London
	Nottingham		Sir Peter Mansfield Magnetic Resonance Centre
UK	Oxford	7T	Oxford Centre for Functional MRI of the Brain
USA	Auburn	71	Auburn University
USA	Austin	7T	Cancer Prevention & Research Institute of Texas
USA	Austin Baltimore	7T	
USA	Bethesda	71	Kennedy Krieger Institute NIH
USA	Bethesda	7T	
USA		11.7T	
USA	Boston	7T	Harvard (Brigham and Women's Hospital)
USA	Boston	7T	Massachusetts General Hospital
	Chapel Hill		University of North Carolina (UNC - Biomedical Research Imaging Center)
		9.4T	UIC Center for Magnetic Resonance Research
		7T	Cleveland Clinic Foundation
USA		8T	The Ohio State University
	Coralville	7T	University of Iowa Health Care
USA	Dallas	7T	UT Southwestern Imaging Center
	Los Angele:		University of Southern California Health Sciences Campus
	Milwaukee		Medical College of Wisconsin Center for Imaging Research
	Minneapolis		Center for Magnetic Resonance Research
	Minneapolis		Center for Magnetic Resonance Research
	Minneapolis		Center for Magnetic Resonance Research
	Minneapolis		Center for Magnetic Resonance Research
	Minneapolis		Mayo Clinic
		7T	Vanderbilt University Institute of Imaging Science
	New Haven		Columbia University
USA	New Haven		Yale University (MRRC - Magnetic Resonance Research Center)
USA		7T	New York University (Department of Radiology, Center for Biomedical Imaging)
USA	Philadelphia	7T	University of Pennsylvania (Center for Magnetic Resonance and Optical Imaging)
USA		7T	University of Pittsburgh (Magnetic Resonance Research Center)
USA		7T	Oregon Health Sciences University (Advanced Imaging Research Center)
USA	Rochester	7T	Mayo Clinic
USA	San Francis	7T	San Francisco Valley Medical Center
USA	San Francis	7T	University of California, San Francisco (UCSF - Department of Radiology & Biomedical Imaging)
	Stanford	7T	Stanford Medical School

NEW IN 2020

Switzerland :

- \rightarrow Bern, Inselspital
- → Zurich, Universitätsklinik Balgrist

China :

→ Zhejiang, Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT)

UK :

 \rightarrow London, Wellcome Centre for Human Neuroimaging (WCHN)

TO BE INSTALLED IN 2021

China :

- → Beijing, Beijing Tiantan Hospital
- \rightarrow Shanga, Fudan University
- \rightarrow Guangzhou, Zhonghan University
- \rightarrow Chenzhou, PLA Southwest
- \rightarrow Changsha, Hunan Xiangya

US:

 \rightarrow Berkeley, University of California

THANK YOU

APPLICATIONS OF 7T MRI IN NEURORADIOLOGY

